• <table id="uwwuw"></table>
  • 學術報告


    07/06 2022 Seminar
    • Title題目 Liouvillian skin effect in an exactly solvable model
    • Speaker報告人 楊帆(Stockholm University)
    • Date日期 2022年7月6日 15:00
    • Venue地點 線上,https://us02web.zoom.us/j/88406452407?pwd=vRkn5akatzS-76vqT6UK6zN1UvcJvN.1
    • Abstract摘要
      The interplay between dissipation, topology, and sensitivity to boundary conditions has recently attracted tremendous amounts of attention at the level of effective non-Hermitian descriptions. Here I present our recent work [1] on a quantum mechanical Lindblad master equation describing a dissipative topological Su-Schrieffer-Heeger (SSH) chain of fermions  that can be exactly solved for both open boundary condition (OBC) and periodic boundary condition (PBC). We find that the extreme sensitivity on the boundary conditions associated with the non-Hermitian skin effect is directly reflected in the rapidities governing the time evolution of the density matrix giving rise to a Liouvillian skin effect [2,3]. This leads to several intriguing phenomena including boundary sensitive damping behavior, steady state currents in finite periodic systems, and diverging relaxation times in the limit of large systems. We illuminate how the role of topology in these systems differs in the effective non-Hermitian Hamiltonian limit and the full master equation framework.

      [1] F. Yang, Q.-D. Jiang, and E.J. Bergholtz, Phys. Rev. Research  4, 023160 (2022);

      [2] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 170401 (2019);
      [3] T. Haga, M. Nakagawa, R. Hamazaki, and M. Ueda,  Phys. Rev. Lett. 127, 070402 (2021).


  • <table id="uwwuw"></table>
  • <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>